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Abstract

This study employs the space–time conservation element and solution element (CESE) method to simulate the temperature and heat
flux distributions in a finite medium subject to various non-Fourier heat conduction models. The simulations consider three specific
cases, namely a single phase lag (SPL) thermal wave model with a pulsed temperature condition, a SPL model with a surface heat flux
input, and a dual phase lag (DPL) thermal wave model with an initial deposition of thermal energy. In every case, the thermal waves are
simulated with respect to time as the thermal wave propagates through the medium with a constant velocity. In general, the simulation
results are found to be in good agreement with the exact analytical solutions. Furthermore, it is shown that the CESE method yields low
numerical dissipation and dispersion errors and accurately models the propagation of the wave form even in its discontinuous portions.
Significantly, compared to traditional numerical schemes, the CESE method provides the ability to model the behavior of the SPL ther-
mal wave following its reflection from the boundary surface. Further, a numerical analysis is performed to establish the CESE time step
and mesh size parameters required to ensure stable solutions of the SPL and DPL thermal wave models, respectively.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In ultra-fast heat conduction systems, the orders of mag-
nitude of time or space are extremely short, and thus the
traditional Fourier conduction law with its implicit
assumption of instantaneous thermal propagation is no
longer applicable. As a result, special treatments are
required to model the thermal transport phenomena in
nano- and micro-scale systems.

Cattaneo [1] and Vernotte [2] proposed a thermal wave
model with a single phase time lag, in which the tempera-
ture gradient established after a certain duration was given
by

~qþ s
o~q
ot
¼ �krT ; ð1Þ
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where s denotes the relaxation time required for the ther-
mal physics to include hyperbolic effect within the medium.
From Eq. (1), it can be seen that when s > 0, the thermal
wave propagates in the medium with a finite speed C,
where C ¼

ffiffiffiffiffiffiffi
a=s

p
(a is thermal diffusivity). However, when

s approaches zero, the thermal wave has an infinite speed
and thus the single phase lag (SPL) model reduces to the
traditional Fourier model.

In micro-scale conduction systems, thermal transport
takes place through phonons, free electrons and photons.
Hence, when the size of the physical system approaches
the characteristic size of these media, it is necessary to take
account of some original neglected conditions in the
macro-scale, such as phonon–electron interaction, phonon
scattering, and so forth. Therefore, Tzou [3] proposed the
following dual phase lag (DPL) model:

~qþ sq
o~q
ot
¼ �k rT þ sT

o

ot
rT

� �
; ð2Þ
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Nomenclature

C speed of thermal wave
Cp specific heat
G amplification matrix
g internal heat source
k thermal conductivity
t time
T temperature
T0 reference temperature
Tw wall temperature
q heat flux
Q dimensionless heat flux
S dimensionless internal heat source
x spatial variable

Greek symbols

a thermal conductivity
b ratio of (BDn/Dg2)

c ratio of (Dn/Dg)
g dimensionless space variable
k eigenvalue
q density
s thermal relaxation time
h dimensionless temperature
n dimensionless time variable

Subscripts and superscripts

m matrix element
l end location of film
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where sT and sq re introduced to account for the finite times
required for thermal equilibrium conditions to be obtained
and effective collisions to take place between the electrons
and the phonons, respectively.

The published literature contains many investigations
into thermal wave behavior. For example, Baumeister
and Hamill [4] solved the change in temperature in a
semi-infinite medium under the assumption of a constant
temperature boundary condition. Maurer and Thompson
[5] derived an analytical solution for the non-Fourier heat
conduction problem with constant heat flux boundary
conditions. Özisik and Vick [6] developed analytical solu-
tions for the hyperbolic heat conduction equation describ-
ing the wave nature of thermal energy transport in a finite
slab containing a volumetric energy source and having
insulated boundaries. Gembarovič and Majerni [7] calcu-
lated the temperature distribution resulting from the
absorption of an instantaneous pulse of heat flux in a
finite medium. Torii and Yang [8] and Lewandowska
and Malinowski [9] investigated the propagation of ther-
mal waves in thin films subjected to symmetrical heating
on either side using a numerical scheme and an analytical
approach, respectively. Tang and Araki [10] derived an
analytical solution for the DPL model using Green’s func-
tion and a finite integral transformation technique.
Finally, the phase lag concept has also been employed
to investigate the thermal behavior of interfacial phase
compounds in metal matrix composites and thin films
[11–13]. Although analytical solutions for both SPL and
DPL thermal waves have been found, the solutions are
limited to specific geometries and boundary conditions.
Moreover, finding an exact solution invariably involves
the use of a numerical technique to find the Laplace
inverse transformation solution (e.g. the Riemann-sum
approximation).
Numerical schemes provide a convenient means of solv-
ing thermal wave problems since they enable a variety of
boundary conditions or geometric shapes to be treated
using a single algorithm. Typical methods include the finite
difference method and the finite element method. Gem-
barovic [14] solved the hyperbolic type heat conduction
equation using an explicit iterative finite difference algo-
rithm. However, the numerical solutions for the thermal
wave shape deviated significantly from the exact solutions.
Fan and Lu [15] employed a numerical method combining
Laplace transformation and the dual reciprocity boundary
element method to solve the DPL problem. However, obvi-
ous errors were observed between the numerical results and
the analytical solutions. Although, many numerical solu-
tions for thermal waves have been published, SPL thermal
waves typically have a discontinuous characteristic, and
hence their behavior is not easily modeled using traditional
numerical schemes such as the finite difference method.
Moreover, commercial software designed to simulate the
temperature distribution in finite bodies is generally based
on the conventional Fourier heat conduction equation, and
is therefore inapplicable to the more realistic case of non-
Fourier heat conduction in nano- and micro-scale systems.

The space–time conservation element and solution ele-
ment (CESE) method was developed by Chang [16] in
1995 as a means of solving the Navier–Stokes and Euler
equations applied in many computational fluid dynamics
and aero-acoustic problems [17]. The overriding principle
of the CESE method is to ensure global and local flux con-
servation in the space–time domain. In the CESE method,
both the independent flow variables and their derivatives
are treated as unknowns and are solved simultaneously.
Importantly, there is no need to adjust the artificial dissipa-
tion to match the local solution properties, and hence a
uniform solution accuracy is assured. These features render
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the CESE method an ideal solver for wave problems char-
acterized by discontinuous phenomena or sharp gradients,
such as combustion systems, shock waves, ZND waves,
and so on. Hence, this study applies the CESE method to
simulate the SPL and DPL thermal waves in a finite med-
ium subject to non-Fourier heat conduction conditions. In
addition, a stability analysis is performed to establish suit-
able values of the CESE space and time mesh parameters
when modeling SPL and DPL thermal wave systems.
2. Mathematical models

The present simulations consider three different mathe-
matical models, as described in the sections below.
2.1. SPL model and energy equation with no internal heat

source

The modified ‘non-Fourier’ heat flux equation and
energy equation for the case of no internal heat source
can be represented, respectively, as

qðx; tÞ þ s
oqðx; tÞ

ot
¼ �k

oT ðx; tÞ
ox

; ð3Þ

qCp
oT ðx; tÞ

ot
¼ � oqðx; tÞ

ox
: ð4Þ

These coupled equations describe the temperature and heat
flux distributions in the thickness (i.e. x-direction) of a film.
Note that the variables s, k and Cp denote the phase-lag
time of the heat flux vector, the thermal conductivity of
the medium, and the volumetric heat capacity of the med-
ium, respectively. In dimensionless form, the temperature,
heat flux and time and space variables are given, respec-
tively, by

hðn; gÞ ¼ T ðx; tÞ � T 0

T w � T 0

; Qðn; gÞ ¼ aqðx; tÞ
ðT w � T 0ÞkCp

n ¼ C2t
2a

; g ¼ Cx
2a
¼ x

2sC
:

ð5Þ

where T0 and Tw are referenced temperature and surface
temperature, respectively. C is the speed of thermal wave.
Using these dimensionless variables, Eqs. (3) and (4) can
be rewritten as

oQðn; gÞ
on

þ ohðn; gÞ
og

¼ �2Qðn; gÞ; ð6Þ

ohðn; gÞ
on

þ oQðn; gÞ
og

¼ 0: ð7Þ
2.2. SPL model and energy equation with internal heat

generation

The modified ‘non-Fourier’ heat flux equation and
energy equation for the case where the conducting medium
contains an internal heat source are given by
qðx; tÞ þ s
oqðx; tÞ

ot
¼ �k

oT ðx; tÞ
ox

; ð8Þ

qCp
oT ðx; tÞ

ot
¼ � oqðx; tÞ

ox
þ gðx; tÞ: ð9Þ

In this particular case, the relevant dimensionless quantities
are defined as follows:

hðn; gÞ ¼ T ðx; tÞ � T 0

g0Cp=k
; Qðn; gÞ ¼ aqðx; tÞ

g0C2
;

Sðn; gÞ ¼ 4a2qðx; tÞ
g0C3

g ¼ Cx
2a
;

gl ¼
CL
2a
; n ¼ C2t

2a
:

ð10Þ

In these quantities, the term g0 denotes the internal heat
flux and has the form

g0 ¼
Z 1

t¼0

Z 1

x¼0

gðx; tÞdxdt: ð11Þ

As shown, g0 essentially represents the total energy released
per unit area normal to the x-axis over the entire region in
all time.

Based upon the dimensionless variables given in Eq.
(10), the following dimensionless equations can be derived
for the heat flux and temperature distributions,
respectively:

oQðn; gÞ
on

þ ohðn; gÞ
og

¼ �2Qðn; gÞ; ð12Þ

ohðn; gÞ
on

þ oQðn; gÞ
og

¼ 1

2
Sðn; gÞ; ð13Þ
2.3. DPL model

The DPL model equation and energy equation are
given, respectively, by

qðx; tÞ þ sq
oqðx; tÞ

ot
¼ �k

oT ðx; tÞ
ox

þ sT
o

ot
oT ðx; tÞ

ox

� �� �
; ð14Þ

qCp
oT ðx; tÞ

ot
¼ � oqðx; tÞ

ox
: ð15Þ

The following dimensionless parameters can be introduced:

h ¼ T ðx; tÞ � T 0

T w � T 0

; Q ¼ q
ðT w � T 0Þ kffiffiffiffiffi

asq
p

; n ¼ t
2sq

;

g ¼ x
2
ffiffiffiffiffiffiffi
asq
p ; B ¼ sT

2sq
:

ð16Þ

Based upon these dimensionless variables, the following
dimensionless equations for the heat flux and temperature
distributions in the medium can be obtained:

oQ
on
þ o

og
hþ B

oh
on

� �
¼ �2Q; ð17Þ

oh
on
þ oQ

og
¼ 0: ð18Þ
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Fig. 1. Schematic illustration of space–time mesh and elements in CESE
scheme: (a) staggered space–time mesh; (b) conservation element (CE) at
point (n, j); (c) solution element (SE) of at point (n, j).
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3. Description of CESE scheme

Traditional numerical methods typically solve the
hyperbolic type non-Fourier conduction equation for tem-
perature using finite difference or finite element schemes.
We apply the CESE scheme to treat the coupled equations
including the energy equation and the thermal wave model
equation (i.e. the SPL model or the DPL model) directly.
Both temperature and heat flux are regarded as unknowns
simultaneously. Hence, the CESE method derives the solu-
tions at every time step for both the temperature and the
heat flux.

The present analysis commences by formulating the
CESE algorithm for the case of the SPL thermal wave
model and energy equation with an internal heat source,
i.e. case (b) above. For simplicity, Eqs. (12) and (13) can
be expressed in the following matrix form:

oGm

on
þ oEm

og
¼ F m; m ¼ 1; 2 ð19Þ

where Gm ¼
Q
h

� �
; Em ¼

h
Q

� �
and F m ¼

�2Q
S=2

� �
. Let

x1 = g and x2 = n be the coordinates of a two-dimensional
Euclidean space E2. Applying the Gaussian divergence the-
orem in E2, the differential form of Eq. (19) can be trans-
formed into the following integral conservation form:I

SðV Þ
~hm � d~s ¼

Z
V
ðF mÞdV ; m ¼ 1; 2 ð20Þ

where ~hm ¼ ðEm;GmÞ and S(V) is the boundary of an arbi-
trary space–time region V in the two-dimensional Euclid-
ean space E2. Essentially, the right hand side of Eq. (20)
is a volume integration representing the internal heat gen-
erated over region V.

As shown in Fig. 1a, the Euclidean space E2 is divided
into an array of non-overlapping rectangular regions
referred to as conservation elements (CEs). In Fig. 1b, it
is shown that the CE having a top face whose midpoint
coincides with mesh point (j,n) is denoted as CE(j,n). From
Fig. 1c, the boundary of CE(n, j) is a subset of the union of
solution element (SE) (n, j), (n � 1/2, j � 1/2) and (n � 1/2,
j + 1/2), respectively.

For any (g,n) 2 SE(j,n), let Gm, Em and ~hm be approxi-
mated by G�m, E�m and ~h�m, respectively, with the following
first-order Taylor’s expansion forms:

G�mðg; n; j; nÞ ¼ ðGmÞnj þ ðg� gjÞðGmgÞnj þ ðn� nnÞðGmnÞnj ;
E�mðg; n; j; nÞ ¼ ðEmÞnj þ ðg� gjÞðEmgÞnj þ ðn� nnÞðEmnÞnj ;
h�mðg; n; j; nÞ ¼ ðG�mðg; n; j; nÞ;E�mðg; n; j; nÞÞ; m ¼ 1; 2:

ð21Þ

An assumption is made that a redistribution of Fm will not
significantly affect the values of Q and S obtained from an
averaging process involving a few neighboring conserva-
tion elements (CEs) provided that the volume integral of
Fm over the CE is maintained constant. As a result, it is
supposed that the internal heat source is redistributed such
that there is no source present within each SE. Conse-
quently, the following relationship can be obtained:

ðGmnÞnj ¼ �ðEmgÞnj ð22Þ

This treatment of source term has been validated by Yu
and Chang [18] in simulating ZND wave problem. From
Eq. (19), it is apparent that Em is a function of Gm. Conse-
quently, Emg is a function of both Gm and Gmg. As a result,
Eq. (22) implies that Gmn is also a function of Gm and Gmg.
Therefore, it can be concluded that the only independent
discrete variables which need to be solved in the current
marching scheme are ðGmÞnj and ðGmnÞnj , respectively.

The discrete approximation of Eq. (20) is given byI
SðCEðj;nÞÞ

~hm � d~s ¼ ðF mÞnj �
DgDn

2
; m ¼ 1; 2: ð23Þ

Combining Eqs. (20)–(23), it can be shown that

DgðGmÞnj � ðF mÞnj Dg
Dn
2

¼ Dg
2
ðGmÞn�1=2

j�1=2 þ
Dg
4
ðGm;gÞn�1=2

j�1=2

� �

þ Dn
2
ðEmÞn�1=2

j�1=2 þ
Dn
4
ðEmnÞn�1=2

j�1=2

� �

þ Dg
2
ðGmÞn�1=2

jþ1=2 �
Dg
4
ðGm;gÞn�1=2

jþ1=2

� �

� Dn
2
ðEmÞn�1=2

jþ1=2 þ
Dn
4
ðEmnÞn�1=2

jþ1=2

� �
m ¼ 1; 2 ð24Þ

Refer to Fig. 1b, the first term on the left hand side of Eq.
(24) gives the flux of ~hm across the top area of CE(n, j).
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Meanwhile, the first and second terms on the right hand
side of Eq. (24) represent the ~hm fluxes across the bottom
and left faces of CE(n, j), respectively, about point (n � 1/
2, j � 1/2). Finally, the third and fourth terms denote the
fluxes across the bottom and right faces of CE(n, j), respec-
tively, about point (n � 1/2, j + 1/2).

To deal with the discontinuous nature of the SPL ther-
mal wave, we adopt the damping scheme proposed in [16]
to describe the special differential term ðGm;gÞnj , i.e.

ðGmgÞnj ¼ W ½ðGmg�Þnj ; ðGmgþÞnj ; d�: ð25Þ

Here, the function W be defined by

W ½z�; zþ; a� ¼ j zþj
dz�þ j z�jdzþ
j zþjdþ j z�jd

ð26Þ

and has a value of zero when z+ and z- are zero. The coef-
ficient d is an integer or zero. Furthermore, ðGmg�Þnj is given
by

ðGmg�Þnj ¼ �
ðG0mÞ

n
j�1=2 � ðGmÞnj
Dg=2

: ð27Þ

Here ðG0mÞ
n
j is expressed in the n-direction from point

ðGmÞn�1=2
j , and thus the following form is obtained:

ðG0mÞ
n
j�1=2 ¼ ðGmÞn�1=2

j�1=2 þ
Dn
2
ðGmnÞn�1=2

j�1=2 : ð28Þ

Overall, Eqs. (19)–(28) describe the application of the
CESE scheme to the modeling of the coupled SPL thermal
wave equation and energy equation. The process of apply-
ing the CESE algorithm to compute the DPL thermal wave
model is very similar to that of the SPL case. However, an
important difference lies in the contents of matrix Em. The
corresponding definitions are as follows:

oGm

on
þ oEm

og
¼ F m; m ¼ 1; 2; ð29Þ

where Gm ¼
Q
h

� �
;Em ¼

hþ B oh
on

Q

� �
and F m ¼

�2Q
0

� �
. It is

observed that matrix Em contains a derivative term of h.
However, in the current definition of the SE, the derivative
term will be canceled in the first-order Taylor’s expansion
form, i.e. E�m.

4. Stability analysis

In this study, the stability of the CESE scheme is exam-
ined using the von-Neumann analysis technique with the
aim being to identify suitable CESE time and space mesh
size values when modeling SPL and DPL thermal waves,
respectively.

4.1. SPL model

For all (j,n) belonging to the Euclidean space E2 let

ðGmÞnj ¼ eðnÞeij/; m ¼ 1; 2; i ¼
ffiffiffiffiffiffiffi
�1
p

; �p < / 6 p;

ð30Þ
where e(n) is a 2 � 1 column matrix describing the distur-
bance at the nth time step. Substituting Eq. (30) into Eq.
(24) and setting a equal to zero for a linear analysis, it
can be shown that

eðnÞ
eðn� 1=2Þ � G ¼

G11 G12

G21 G22

� �
; ð31Þ

where the amplification matrix is the square of matrix G.
Defining variable c as c = Dn/Dg, it can be shown that
the elements of matrix G have the forms:

G11 ¼
1

ð1þ DnÞ cos
/
2

� �
þ 1

4
ðc2 � 1Þðcos /� 1Þ

� �
;

G12 ¼ �ic sin
/
2

� �
1

ð1þ DnÞ ;

G21 ¼ �ic sin
/
2

� �
;

G22 ¼ cos
/
2

� �
þ 1

4
ðc2 � 1Þðcos /� 1Þ:

ð32Þ

It is given by the knowledge of the eigenvalue of G which
are solutions of the equation det [G � kI] = 0. The eigen-
values of G are given by

k ¼
�C1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 � 4C2

q
2

: ð33Þ

Note that this eigenvalue has both real and imaginary
parts. The coefficients C1 and C2 are derived from

C1 ¼ �
1

4þ Dn
ð2þ DnÞ 4 cos

/
2

� �
þ ðc2 � 1Þðcos /� 1Þ

� �
:

C2 ¼
1

16ð1þ DnÞ 4 cos
/
2

� �
þ ðc2 � 1Þðcos /� 1Þ

� �2

þ c2 sin2 /
1þ Dn

:

ð34Þ

For a stable solution, the modulus of the amplification ma-
trix must be bounded. In the current case, the norm of any
eigenvalue of the amplification matrix must be less than 1,
i.e.

jkj2 6 1 ð35Þ

where

jkj2¼ 1

ð1þDnÞ
1

8
ð1� c2Þ2 cos

/
2

� �� �4

�ð1� c2Þ cos
/
2

� �� �3
(

þ 1�1

4
ð1� c2Þ

� �
ð1� c2Þ cos

/
2

� �� �2

þð1� c2Þ cos
/
2

� �� �
þ 1

8
ð1� c2Þ2þ c2

� �)
ð36Þ

The first derivative of function jkj2 with respect to cos /
2

� �
yields the extreme value of the eigenvalue. To guarantee
the solution stability of the CESE scheme, it is required
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that jkmaxj2 6 1. Thus, the following general limitation con-
dition applies when the CESE scheme is employed to solve
the SPL thermal wave model:

0 < c 6 1: ð37Þ
4.2. DPL model

The amplification matrix for the DPL model has the
same form as that shown in Eq. (31) for the SPL thermal
wave. Defining c = Dn/Dg as before, and introducing
b ¼ B Dn

Dg2, the elements of G are derived as

G11¼
1

ð1þDnÞ cos
/
2

� �
þ c2

4
�1

4
þb

� �
ðcos/�1Þ

� �
;

G12¼�ic
1

ð1þDnÞ sin
/
2

� �
;

G21¼�icsin
cos/�1

2

� �
;

G22¼ cos
/
2

� �
þ1

4
ðc2�1Þðcos/�1Þ:

ð38Þ
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Fig. 2. Temperature distributions of SPL thermal wave computed by CE
dimensionless time steps of n = 0.1, 0.4, 0.8 and 1.7.
The eigenvalues of G are again given by

k ¼
�C1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 � 4C2

q
2

; ð39Þ

in which C1 and C2 have the forms

C1 ¼ � cos
/
2

� �
� 1

1þ Dn
cos

/
2

� �
þ 1

4
ð�1þ c2 þ 4bÞ

�

� ðcos /� 1Þ
�
� 1

4
ðc2 � 1Þðcos /� 1Þ

C2 ¼
1

1þ Dn
cos

/
2

� �
þ 1

4
ðc2 � 1Þðcos /� 1Þ

� �

� cos
/
2

� �
þ 1

4
ðc2 þ 4b� 1Þðcos /� 1Þ

� �
þ

c2 sin2 /
2

� �
1þ Dn

ð40Þ

While too complicated for analytical stability analysis, the
amplification factor given above is suitable for analysis
using numerical methods, and the result will be discussed
later.
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5. Results and discussion

As described below, the CESE scheme was applied to
simulate a series of problems involving SPL and DPL ther-
mal waves, respectively. In every case, the validity of the
numerical results was confirmed via a comparison with
the equivalent analytical solutions. Having performed the
simulations, a numerical analysis was then performed to
establish the CESE mesh size parameters required to
ensure stable solutions of the SPL and DPL thermal wave
models, respectively.

The simulations commenced by considering case (a) in
Section 2 of this paper, namely an SPL thermal wave with
no internal heat source. The CESE simulation results were
compared with the analytical solutions presented by Gem-
barovič and Majerni [7]. Fig. 2a–d illustrates the tempera-
ture distribution at various elapsed times in an isotropic
homogeneous finite medium with zero initial temperature,
adiabatically insulated boundaries, and one surface heated
by a stepwise heat pulse. The simulated film is assumed to
have a uniform thickness of 1 cm and a thermal conductiv-
ity of a = 0.025 cm2/s. Furthermore, the thermal relaxation
time is specified as s = 10 s and the heat pulse is assumed to
η

T
em

p
er

at
u

re
, θ

0 0.25 0.5 0.75 1
0

1

2

3

4

5

ξ = 0.3

ξ = 0.7

η

H
e

at
 F

lu
x,

Q

0 0.25 0.5 0.75 1
0

1

2

3

4

5

ξ = 0.3

ξ = 0.7

a

Fig. 3. Temperature and heat flux distributions of SPL thermal wave co
dimensionless time steps of n = 0.3, 0.7, 1.3, 1.7, 2.3 and 2.7.
have a duration of 2 s (i.e. dimensionless duration is 0.1).
Finally, the CESE parameters are assigned values of
Dn = 0.005 and Dg = 0.005, respectively. Fig. 2a–c, corre-
sponding to elapsed dimensionless times n of 0.1, 0.4 and
0.8, respectively, indicate that the energy of the wave front
is dissipated as it propagates through the medium due to
the damped effect of SPL thermal waves. The temperature
discontinuities observed at the front and back of the wave,
respectively, are a result of the discontinuities in the heat
flux distribution function applied at the medium surface.
Fig. 2d shows that the thermal wave propagates in the
reverse direction following its collision with the boundary
located at g = 1. Due to the essential phenomena of the
hyperbolic type governing equation, the propagated wave
inherits its shape from the previous time step. Moreover,
the wave dissipates its energy along its propagation path
due to the damped effect of the SPL model. Overall,
Fig. 2a–d demonstrates that the CESE solutions for the
temperature distribution are in excellent agreement with
the exact analytical solutions even in the discontinuous
portions of the wave form.

The second set of simulations corresponds to case (b) in
Section 2, namely a SPL thermal wave in a finite medium
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Fig. 3 (continued)

Table 1
Numerical stability experiment results: limiting value of b for CESE
solution stability when applied to DPL thermal wave problem

Dn B

0.02 0.2 0.5 1.0

1 � 10�6 0.502 0.501 0.500 0.500
1 � 10�5 0.506 0.502 0.501 0.500
1 � 10�4 0.518 0.507 0.505 0.504
1 � 10�3 0.560 0.521 0.516 0.513
1 � 10�2 0.725 0.570 0.553 0.546
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Fig. 4. (a) Temperature distribution and (b) heat flux distribution of DPL
thermal wave computed by CESE algorithm (line) and analytical method
(symbol) at n = 0.1 for different values of B, i.e. 0.0, 0.02, 0.2 and 0.5.
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containing an internal heat source. In this case, the simula-
tion results are compared with the analytical solutions pre-
sented by Özisik and Vick [6]. It is assumed that the
medium (i.e. the film) has insulated boundaries and is ini-
tially in a state of thermal equilibrium. Furthermore, the
position for the fixed pulse width is 0.04 from the left side
of film. Finally, the CESE parameters are specified as
Dn = 0.001 and Dg = 0.001, respectively. Fig. 3 illustrates
the evolution of the temperature and heat flux distributions
over time. Fig. 3a and b shows the temperature and heat
flux distributions before and after the thermal wave reaches
the medium boundary located at g = 1, respectively. Simi-
larly, Fig. 3c shows the case where the thermal wave has
been reflected from the boundary located at g = 0. Com-
paring the CESE solutions and the analytical results, it is
evident that the CESE scheme is characterized by very
low numerical dissipation and dispersion errors.

The third set of simulations relates to case (c) in Section
2 of this paper, namely a DPL thermal wave in a semi-infi-
nite medium following an initial deposition of thermal
energy over the interval n = 0 to n = 0.2. In the simula-
tions, Dn is assigned a value of 0.001 and the selected spe-
cial increment Dn is provided in Table 1 for different values
of B (i.e. the ratio of lag time). Fig. 4a and b illustrates the
temperature distribution and heat flux distribution, respec-
tively, as a function of B. Note that values of B = 0 and
B = 0.5 correspond to the particular cases of an SPL wave
and thermal diffusion, respectively. The results show that
as the value of B is increased, the phase lag effect suppresses
the characteristic peak in the thermal wave, and the disper-
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sion phenomena of the DPL model is controlled by the
ratio B and reflects the effect of the two lag times (sT,sq).
Furthermore, it is evident that the CESE solutions are in
good agreement with the exact results.

The eigenvalues of the amplification matrix derived
from Eq. (33) can be plotted using either polar coordinates
or Cartesian coordinates, as shown in Fig. 5a and b,
respectively. Note that in both figures, the circles labeled
R = 1 (i.e. the radius of unit cycle) represent the demarca-
tion line between the stable and unstable solution regimes.
In Fig. 5a, it can be seen that when c is greater than 1 (e.g.
c = 1.25), some of the values of G fall outside of the unit
circle. Similarly, in Fig. 5b, some values exceed the stability
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Fig. 5. Amplification factor given by eigenvalues of CESE for SPL
thermal wave model expressed in terms of: (a) polar coordinates; (b)
cartesian coordinates.
limit (i.e. jkj = 1). In other words, this particular value of c
causes the CESE solutions to become unstable. However,
when c is equal to 1, all of the values of G fall within the
stable regions of the two plots since the coefficient 1/
(1 + Dn) in Eq. (36) always smaller than 1 (Dn > 0). Over-
all, the results presented in Fig. 5 indicate that the value
of the amplification matrix, G, always falls within the stable
region provided that c < 1. Consequently, it can be inferred
that the parameter c should be specified in the range
0 < c 6 1 when applying the CESE scheme to model the
behavior of SPL thermal waves.

Fig. 6 plots the amplification factor given in Eq. (39)
for the DPL model against the value of parameter b for
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Table 2
Numerical stability experiment results: limiting value of Dg for CESE
solution stability when applied to DPL thermal wave problem

Dn B

0.02 0.2 0.5 1.0

1 � 10�6 2.00 � 10�4 6.33 � 10�4 1.00 � 10�3 1.42 � 10�3

1 � 10�5 6.30 � 10�4 2.00 � 10�3 3.16 � 10�3 4.47 � 10�3

1 � 10�4 1.97 � 10�3 6.29 � 10�3 9.96 � 10�3 1.41 � 10�2

1 � 10�3 5.99 � 10�3 1.96 � 10�2 3.12 � 10�2 4.42 � 10�2

1 � 10�2 1.66 � 10�2 5.93 � 10�2 9.51 � 10�2 1.35 � 10�1
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various values of B, namely 0.02, 0.2 and 0.5. In each
figure, the results are presented for time mesh size values
of Dn = 1 � 10�2, 1 � 10�3, 1 � 10�4 and 1 � 10�5, respec-
tively. Usage of the maximum value of jkj2 to determine
the value of b corresponding to the edge of stability.
Fig. 6a, corresponding to the case of B = 0.02, shows that
stable CESE solutions will be obtained when b has a value
of less than 0.506 and Dn is equal to 1 � 10�5. In other
words, the corresponding stability criterion can be
expressed as Dg P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB � DnÞ=0:506

p
. Similarly, Fig. 6b

and c shows that the limiting values of b for B = 0.2 and
B = 0.5 are 0.502 and 0.506, respectively (for
Dn = 1 � 10�5). The limiting values of b andDg for various
values of Dn and B are summarized in Tables 1 and 2,
respectively. In general, Table 1 shows that the limiting
value of b reduces with decreasing Dn and increasing B.
Furthermore, it can be seen that when Dn is reduced to
1 � 10�6 and B approaches a value of 1.0, the limiting
value of b is 0.5. In other words, when applying the CESE
scheme to model the behavior of DPL thermal waves, the
parameters Dg and Dn should be specified in accordance
with the condition Dg P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB � DnÞ=0:5

p
to ensure the sta-

bility of the results. However, specifying an excessively high
value of Dg (e.g. Dg = 9.51 � 10�2) will cause serious
numerical diffusion due to the corresponding loss of resolu-
tion in the grid. Furthermore, when B is equal to zero, the
DPL model reduces to the SPL model, and therefore the
values of Dn and Dg are bounded by Eq. (35).

6. Conclusion

This study has employed the space–time conservation
element and solution element (CESE) scheme to model
the behavior of SPL and DPL thermal waves. The simula-
tions have considered three specific cases, namely a single
phase lag (SPL) thermal wave model with a pulsed temper-
ature condition, a SPL model with a surface heat flux
input, and a dual phase lag (DPL) thermal wave model
with an initial deposition of thermal energy. Furthermore,
all physical behaviors are illustrated clearly in discussion
section. In general, the results have shown that the CESE
scheme is characterized by low numerical dissipation and
dispersion errors and accurately captures the heat transfer
and temperature distribution characteristics of the thermal
waves even around the points of discontinuity and follow-
ing reflection from the medium boundary.

This study has also performed a numerical stability
analysis based on the von Neumann method to obtain
some basic insights regarding an appropriate choice of
space mesh size and time step size settings when applying
the CESE scheme to simulate non-Fourier heat conduction
problems involving SPL and DPL thermal waves. Overall,
the results have shown that the ratio c should be specified
in the interval 0 < c 6 1 when modeling SPL thermal
waves, while Dn and Dg should satisfy the condition
b 6 0.5 when simulating DPL waves.
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